При розв’язуванні рівнянь, що містять змінну під знаком модуля, найчастіше застосовують такі методи, як:
a) розкриття модуля за визначенням;
b) метод інтервалів.
За визначенням модуля:
Відзначимо такі властивості модуля, які нерідко використовуються на практиці:
Для найпростіших рівнянь з модулем слід пам’ятати, що рівняння рівносильне сукупності рівнянь якщо . Якщо ж , то рівняння розв’язків не має.
Метод інтервалів (проміжків) при розв’язуванні рівнянь з модулями
Даний метод полягає в тому, що:
1) вирази, які стоять під знаком модуля, прирівнюються до нуля;
2) отримані значення відкладаються на числовій прямій, яка при цьому розбивається на інтервали (проміжки), в кожному з яких свій знак підмодулевого виразу;
3) розв’язуються отримані рівняння в кожному з інтервалів.
На практиці метод інтервалів зазвичай застосовується тоді, коли рівняння містить декілька модулів.
Розглянемо застосування методу інтервалів на прикладах.
Приклад 18. Розв’язати рівняння .
Розв’язання
1-й спосіб розв’язування:
; . Наносимо на числову пряму точки і . Ці точки розбивають числову пряму на три інтервали (проміжки), у кожному з яких свій знак підмодулевого виразу. Для зручності можна позначити ці інтервали І, ІІ, ІІІ:
І: ; ІІ: ; ІІІ: .
Для інтервалу І маємо: ; .
Звідси, дістаємо розв’язання рівняння в І інтервалі: . Однак значення не належить І інтервалу, тобто , тому в І інтервалі початкове рівняння розв'язків не має.
Для ІІ інтервалу ; початкове рівняння має вигляд . Оскільки – це тотожність, то будь-яке є розв’язком, тобто розв’язком рівняння є весь відрізок .
Для ІІІ інтервалу ; початкове рівняння має вигляд: . Оскільки , то в ІІІ інтервалі початкове рівняння розв’язків не має.
Немає коментарів:
Дописати коментар